ZnO-Based Cyclodextrin Sensor Using Immobilized Polydiacetylene Vesicles

*Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, South Korea
Department of Chemical Engineering, Hanyang University, Seoul 133-791, South Korea
Department of Chemical Engineering and Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA

We report that polydiacetylenes (PDAs) vesicles were successfully immobilized and chemisorbed on single crystal ZnO surfaces. Immobilized PDAs on ZnO were found to be sensitive to temperature and selectively sensitive to α- and γ-cyclodextrins. This approach is attractive for the on-chip integration of various types of sensors, ultraviolet light emitting diodes, and transparent electronics with PDAs.

© 2006 The Electrochemical Society. [DOI: 10.1149/1.2364306] All rights reserved.

Manuscript submitted June 2, 2006; revised manuscript received June 30, 2006. Available electronically November 1, 2006.

Electrochemical and Solid-State Letters, 10 (1) J1-J3 (2007)
1099-0062/2006/10(1)/J1/3/$20.00 © The Electrochemical Society

Recently there has been intense interest in the development of ZnO for applications in ultraviolet (UV) light emitters, transparent high power electronics, transparent electrodes in displays, and in photovoltaic devices, piezoelectric transducers, and chemical and gas sensing. In addition, ZnO is lattice matched to InGaN at an In composition of 22%, allowing for integration of the two materials to provide enhanced functionality. An example would be combining visible or UV light-emitting diodes with fluorescent chemical or biological detectors and off-chip wireless communications circuitry. ZnO of reasonable quality can also be deposited at lower growth temperatures than GaN, leading to the possibility of transparent junctions on cheap substrates, such as glass. This may lead to low-cost UV lasers with important applications in high-density data storage systems, solid-state lighting where white light is obtained from phosphors excited by blue or UV light-emitting diodes, secure communications, and biodetection. ZnO is attractive for sensing applications because of its wide bandgap (3.2 eV), the availability of heterostructures, the ease of synthesizing nanostructures and the bio-safe characteristics of this material. Recently, the first applications in pH sensor and gas sensor using ZnO were published. ZnO is a transparent substrate, which makes it easier to monitor the chemistry occurring on the surface from backside using the optical spectroscopy, compared with opaque GaAs and Si substrates. For these reasons, there is significant interest in ZnO-based chemical and biological sensors.

After the first report of polydiacetylene (PDA) supramolecules as an influenza virus sensor, the applications of PDAs as chemosensors and biosensors have been a subject of much recent research. Polydiacetylene has been known for its unique property that “blue-phase” polydiacetylene does not fluoresce but its counterpart “red-phase” is fluorescent. The phase transition from blue-phase to red-phase happens in response to many stimuli from environments such as temperature, pH, and ligand-receptor interactions. We recently reported the unique effects of cyclodextrins on the formation and colorimetric transition of polydiacetylene vesicles as well as the new approach for the immobilization of PDA on glass. Furthermore, the functionalized PDAs can be used as chemosensors to monitor ion, glucose, protein and E. Coli. Because the immobilized PDA supramolecule showed better sensitivity against smaller amount of target analytes than PDA solution, it would be advantageous to integrate immobilized PDA in micrometer-size regions with ZnO-based devices.

Experimental

The bulk ZnO hexagonal-phase single crystals from Cermet, Inc. were 1 cm² in dimension and were nominally undoped with 300 K electron concentration of 9×10^{18} cm⁻³ and mobility of 200 cm²/V s. To immobilize PDA on the ZnO surface, the ZnO was first cleaned with acetone and ethanol. Then, the Zn-face surface of ZnO was treated using an ozone plasma for 30 min to remove surface hydrocarbons. After ozone treatment, ZnO was dipped in an amine solution (3-aminopropyltriethoxysilane:ethanol = 1:10 in volume ratio) for 4 h. When the contact angle was measured against pure water (pH 5.5, room temperature) after this process, it was 65.5° (Fig. 1). Then, it was dipped in a solution containing 1 mg N-hydroxysuccinimido-biotin dissolved in 1 mL dimethylsulfoxide and 3 mL phosphate buffered saline (PBS; pH 7.2), for 2 h and avidin for another 2 h. At this point, the surface of ZnO was ready for the immobilization of supramolecules (here, vesicles) after the treatments of biotin and avidin (Fig. 2a). To make self-assembled surface patterns of the vesicles, PCDA-ABA (10,12-pentacosadiynoic acid-acinobutyric acid):PCDA-biotin (10,12-pentacosadiynoic acid-2,2’-(ethylenediroyxy)-bis(ethylamide)-biotin) ≈9:1 was used to fabricate vesicles through a standard sonication method. The size distribution of the vesicles was measured by light scattering to be mono-modal and the average size was ~169 nm. A microarray (Nano-plotter from Gesim) was employed for patterning to immobilize vesicle on the ZnO surface. After the supramolecule (self-assembled PCDA-ABA:PCDA-Biotin) was deposited on the ZnO surface, the supramolecule/ZnO hybrid structure was exposed to UV light of 254 nm for polymerization at the intensity of 1 mW/cm² for 5 min. Finally, the formed PDA supramolecular surface pattern arrays were immobilized and chemisorbed on ZnO surface (Fig. 2b). To confirm the immobilization, we report...
tion, ZnO was washed with deionized water and heated to 110°C to stimulate PDA supramolecules, which are responsive to a threshold temperature.

Results and Discussion

Figure 3 shows that no fluorescence image was detectable before heating, but there was a well-defined fluorescence image after thermal treatment, which confirmed two things, namely, that PDAs pattern arrays (spot size = 250 μm) were successfully immobilized on the ZnO surface and second, that they were responsive to temperature. Because we know that the polymerized vesicles were immobilized on the ZnO surface, we tried to use it for cyclodextrin (CD) sensing because these CDs have different binding specificities against α- and γ-CDs, which make it valuable to study the ligand-receptor interactions. These were then tested for selectivity. Figure 4 shows the structures of each CD. Because PCDA-ABA [one of components of supramolecule (self-assembled PCDA-ABA:PCDA-biotin)] is only sensitive to α-CD, two pieces of functionalized ZnO were dipped in each α- and γ-CD solutions for 30 min. Figure 5 shows that our immobilized PDA is only sensitive to α-CD, which is confirmed from red fluorescence measurements by a fluorescence

![Figure 2](image)

Figure 2. (Color online) (a) Schematic procedure of surface treatment with biotin and avidin and (b) immobilization of PDA vesicles on ZnO.

![Figure 3](image)

Figure 3. (Color online) Fluorescence image after thermal treatment to confirm the immobilization of PDA vesicles on ZnO.
Conclusions

PDA vesicle was successfully immobilized on the surface of ZnO single-crystal substrates. The regions on which the PDA was immobilized were as small as 250 μm and were achieved by chemisorption. PDA pattern arrays on ZnO showed the same function as PDA solutions, which is sensitive to a number of environmental parameters. For example, PDA on ZnO was responsive to temperature and selectively sensitive to α-CD, but not to γ-CD. This is an important first step in the application of the PDA vesicle system extended to ZnO-based chemical sensors and to the integration with ZnO-based microelectronics.

Acknowledgments

The research at Korea University was supported by Brain Korea 21 program in 2006, a Korea University Grant Fund, KRF, and MOH. The work at Hanyang University was supported by KOSEF (Basic research Program). The work at UF is partially supported by AFOSR, F49620-03-1-0370, by ARO DAAD19-01-1-0603, AFOSR (F49620-02-1-0366 and F49620-03-1-0370), NSF(CTS-0301178, monitored by Dr. M. Burka and Dr. D. Senich), (DMR 0400416, Dr. L. Hess)

References